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Abstract—Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human
populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how
GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and
evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to
increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and
fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food.
Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of
humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment.
Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust
enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of
chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ.

Toxicol. Chem. 2013;32:62-78. © 2012 SETAC
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INTRODUCTION

Global climate change (GCC) is associated with significant
changes in long-term weather characteristics and short-term
weather extremes in different regions. The world is becoming
warmer overall, with increases in temperature being greatest
over land and at high northern latitudes, and least over the
Southern Ocean and northern North Atlantic. Snow-cover area
is contracting and sea and mountain ice shrinking. Precipitation
has increased in many regions at higher latitudes, while
decreases have been observed in most subtropical land regions.
These trends are expected to continue and intensify into the
foreseeable future. While flooding rains are expected to become
more common at higher latitudes, many areas that are currently
semiarid are projected to experience more prolonged periods
of drought. Future tropical cyclones are likely to become more
intense, while extratropical storm tracks are projected to move
toward the poles, changing wind, precipitation, and temperature
patterns [1].

Chemical contaminants in the environment affect human
health both directly and indirectly. Direct toxic effects range from
acute poisonings and triggering of acute events like cardiac
arrhythmias and asthma attacks to chronic effects like cancer
and immunosuppression [2—4]. Indirect effects include changes
in health risks associated with changes in food supply and water
sources as a result of chemical contamination or due to the
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selection of antibiotic resistance traits in bacteria exposed to
veterinary and human antibiotics, metals, and other toxic sub-
stances [5-8]. Because the persistence and mobility of toxic
chemicals in the environment are affected by weather condi-
tions such as temperature, precipitation, and wind, changes in
these processes associated with GCC have implications for
human exposures. Also, GCC is predicted to affect human
diseases, change behavioral patterns that could influence expo-
sures, and create additional physiologic stress through extreme
temperatures. These human impacts of GCC, in addition to
affecting health directly, may affect the vulnerability of humans
to health risks from chemical exposures [9]. Together, these
changes in exposure and vulnerability to toxic chemicals may
significantly alter human health risks.

To protect health, it is important that policy makers and
regulatory organizations consider how GCC may influence
chemical risks to humans and develop approaches to adequately
assess and manage that risk. At the same time, in addition to
GCC, there are other important future drivers of chemical risks,
such as urbanization, demographic change, and developments
in technology. These nonclimate drivers may also have positive
or negative effects on exposure; and in some cases, they may
have a bigger impact on human exposure than GCC alone.
Future projections of potential chemical risks will thus need to
integrate climate and nonclimate drivers.

The present study, one of a series arising from a SETAC-
sponsored workshop to explore the potential influence of GCC
on the foundation and applications of environmental toxicology
and chemistry [10-15], presents options for addressing GCC in
the assessment and management of the risks of chemicals in the
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natural environment to human health. Because this topic has not
been a focus of the environmental toxicology community, there
are few data to support a quantitative analysis of how specific
chemical risks may be altered by GCC. Therefore, we begin by
exploring the mechanisms by which GCC may alter human
exposures and vulnerability to toxic chemicals. Using four
specific examples of decision contexts for chemical risks, we
then evaluate the robustness of current practices for chemical
risk-assessment and management practices in the light of
potential changes in human exposure and vulnerability caused
by GCC. Where appropriate, we provide recommendations
on how existing risk-assessment and chemical management
practices could be improved to account for changes in exposure
and vulnerability.

ANTICIPATED CHANGES IN THE
SOURCE-PATHWAY-RECEPTOR RELATIONSHIP

For humans to be affected directly, chemicals must move
through a pathway often called the source-to-receptor pathway.
After being released from some source and moving through the
environment, often being transformed by physical or biological
factors in the process, chemicals must come into contact with
and enter the body of a human. Once in the body, chemicals are
subject to human toxicokinetic processes, ultimately coming in
contact with some target tissue or molecular receptor to initiate
an adverse outcome (Fig. 1). This chain of events is often
complex, involving transformation of chemicals in the environ-
ment and their uptake and accumulation in organisms that play a
role in exposing humans to those chemicals (e.g., consumption
of contaminated fish). Changes in climate and associated
changes in weather patterns, as well as non-climate-related
drivers, are anticipated to affect various points in the source-
to-receptor pathway, modifying how and to what extent humans
are exposed to toxic chemicals and how they respond to harmful
effects from those exposures [16].
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GCC-related alterations in chemical sources

Adaptation to GCC can influence the use and release of
chemicals into the environment. For example, the types of
pesticides, pharmaceuticals, and veterinary medicines used
and the timing and frequency of their use will likely differ
from today in response to changing disease and pest pressures
resulting from GCC [17]. Biocide use, for example, is likely to
increase in response to increases in animal and plant pests and
diseases that may arise from increasing temperature and humid-
ity [17,18]. Expected decreases in fossil fuel use resulting from
greenhouse gas mitigation policies will likely reduce ground-
level air pollution by particulate matter and ozone in urban areas
[19], while shifts in the production of some types of biofuels
may increase levels of air pollution in rural areas; also, their
use may increase their combustion product exposures [20]. In
addition to changing human patterns of chemical use and other
behaviors, GCC may affect the rates of formation of natural
toxins (such as fungal and algal toxins) in the environment
as well as the geographical distribution of these substances
[21,22].

GCC alterations in chemical fate and transport

It is also likely that GCC will combine with other natural and
anthropogenic factors to affect the transport and transformation
of toxic chemicals in the natural environment [11,17,23,24].
Increases in temperature can result in increased volatilization
of persistent organic chemicals (e.g., at contamination sources
such as buildings and electrical equipment [25]), thereby
increasing amounts subject to long-range transport [24,26].
Increases in temperature and changes in moisture content are
likely to alter the persistence of chemicals [17,23]. Alterations
in soil characteristics (organic carbon, dustiness) and hydrology
may change how contaminants are transported around a terres-
trial ecosystem as well as the dilution potential of contaminants
in rivers and streams. Increases in the occurrence of extreme
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Fig. 1. Source-pathway-receptor relationship, showing interactions with both climate and nonclimate stressors. GCC = global climate change. [Color figure can

be seen in the online version of this article, available at wileyonlinelibrary.com]



64 Environ. Toxicol. Chem. 32, 2013

weather events, such as floods and droughts, will likely alter the
mobility of contaminants. For example, flood events have been
shown to transport dioxins, metals, and hydrocarbons from
contaminated areas to noncontaminated areas [27,28]. In agri-
cultural areas, changes in irrigation practices in response to
GCC could also move contaminants from water bodies onto
land [18]. Changes in the degree and duration of ice cover may
affect the degradation of contaminants in some regions [29]. For
legacy contaminants, such as mercury, that have been released
to the environment in the past and reside in soil and sediments,
GCC may alter the environment in such a way that the sub-
stances are remobilized or released more rapidly.

Increased temperatures can increase metabolic rates for
many organisms, thereby increasing the potential for bioaccu-
mulation and biomagnification of some contaminants [30].
Temperature-related increases in the uptake and bioaccumula-
tion of metals have been reported for several marine organisms,
including crustaceans, echinoderms, and mollusks [21]. In a
recent modeling exercise of the uptake of methylmercury,
increases in temperature resulted in increased concentrations
of the compound in fish and mammals [31]; temperature
increases would also be expected to accelerate the conversion
of mercury to methylmercury [32]. In some instances, uptake
may decrease. Studies of organochlorine concentrations in fish
between 1994 and 2008 showed a decline in concentrations
with increasing temperature, a trend that could be explained by
declines in lipid content over time [33]. The reason for the
change in lipid content and a possible association with climate
effects are unclear [33].

Effects of GCC on human exposure to chemicals

Changes in the sources, fate, and transport of chemicals will
have both positive and negative implications for contamination
of food, drinking water supplies, air, and, hence, human expo-
sure [16]. However, very few studies have been performed to
quantify the likely changes in exposure concentrations. In
a U.K. study, Beulke et al. [34] quantified the effects of changes
in the use, fate, and transport of pesticides, resulting either
directly or indirectly from GCC, on surface water and ground-
water concentrations. The study showed that concentrations of
pesticides in surface waters and groundwaters are likely to
increase under GCC and that, for some pesticides, peak con-
centrations could increase by orders of magnitude. The indirect
effects of GCC (i.e., effects on amount of pesticide applied and
application timing) on surface-water exposure were found to be
stronger than the impact of changes in the climate alone on
chemical fate and transport. Additional studies of this type are
needed for other classes of pollutant and other geographical
regions.

Global climate change will affect not only the concentrations
of toxic chemicals in water, food, and air, but also how humans
interact with these media; this will also have implications for
the degree of human exposure. For example, reduction in the
availability of drinking water for many populations could
change exposure to waterborne contaminants as human pop-
ulations shift toward other sources of drinking water (e.g., water
from water-reuse and reclamation systems) [35]. Changes in
climate may also impact the amounts of time humans spend
indoors and outdoors, influencing exposure to both indoor and
outdoor contaminants [36].

As very few robust studies into the effects of GCC on human
exposure to chemicals are available, the authors have attempted
to develop a qualitative assessment of how GCC is likely to
affect the sources and distribution of a variety of pollutants with
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an assessment of the likely impact on human exposures
(Table 1). Table 1 illustrates that the effects of GCC are likely
to be very situation-, chemical class-, and source-specific, and
will vary across different geographies and at different times of
the year.

Impacts of GCC on human vulnerability and risk

The analysis in Table 1 indicates that while climate change
could have a positive effect on exposure, in most instances an
adverse effect is anticipated in certain regions and it is possible
that this will result in adverse health outcomes. Table 2 provides
examples of various health effects and risks for some of the
chemical exposures likely to be impacted by GCC. It shows
GCC affecting the incidence and episodic frequency of acute
events, such as cardiovascular and respiratory mortality from
high—air pollution episodes. In regions of some developing
countries, the increase in the extent and magnitude of episodes
of algal and fungal infestations is likely to correspond to
increasing mycotoxin exposures, with attendant increasing
occurrence of target organ toxicity and cancer, especially in
areas where fungal infestations are endemic and populations are
vulnerable [18,24,37]. For a number of the persistent organic
pollutants, with the increased exposure expected in some
regions comes increased risk of cancer and endocrine, neuro-
logical, and reproductive toxicities ([38], see Table 2).

In addition to increased exposure to individual contaminants
influencing the existing disease burden, nonchemical stressors
related to GCC may alter the vulnerability of humans to toxic
insults. The extreme temperatures [39,40] and high ozone levels
experienced during heat waves are independently associated
with increased cardiovascular mortality, but temperature also
appears to interact with ozone, increasing short-term mortality
beyond that expected for either stressor acting independently
[41-44]. Temperature has also been observed to modulate the
impact of cardiovascular mortality due to particulate matter in
ambient air [45,46].

There has been limited study of the effect of temperature
on the toxicity of chemicals in animal models. Temperature has
been observed to increase neurotoxicity from methamphet-
amine exposures in mice [47], and in general, increasing
temperature exacerbates chemical toxicity in animal models
[48]. A number of other nonchemical stressors have been
reported to modify chemical toxicity, such as certain pre-
existing infectious and noninfectious diseases, nutritional sta-
tus, and exposure to violence and other psychosocial stressors
[49-51]. Changes in food-chain structure will likely lead to
alterations in the diet, with attendant changes in nutritional
status and vulnerability [52]. Psychosocial effects of GCC
include social and community effects of heat such as violence
[53], which may also heighten overall vulnerability to chemical
exposures.

IMPACTS OF GCC FOR CHEMICAL RISK ASSESSMENT
AND MANAGEMENT

A number of chemical management processes are used in
different regions of the world to protect human health from
chemical exposure, including the setting of standards for chem-
ical contaminant concentrations in food, air, and water and
associated monitoring practices; the embargo or removal from
the market of products posing unacceptable risks and related
assessment methodologies; warning labels; the mitigation of
site risks and related planning analyses; and the development
of long-term national and international chemical strategies.
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Table 2. Health effects and vulnerable populations for selected environmental exposures potentially affected by climate change

Stressors Health effects

Possible most heavily impacted

populations or regions

Confidence in or evidence
for effects

Mycotoxin residues in foods
(effects indicated are for
aflatoxins)

Carcinogenicity, hepatotoxicity,
immunosuppression,
developmental toxicity [89,90],
and possible male fertility
deficits

Algal toxins (entries in table are
for the blue-green algae toxin
microcystin-LR)

Severe gastroenteritis, liver
toxicity, blistering of mucous
membranes, possible
immunotoxicity, possibly
carcinogenic [94-96]

Ozone Asthma exacerbation, chronic
pulmonary obstructive
disorder, cardiovascular and
pulmonary disease [97,98]

Methylmercury Neurotoxicity [99]

Polyhalogenated biphenyls,
dioxins, furans, and other
halogenated POPs

Carcinogenicity, endocrine
toxicity, neurotoxicity,
reproductive toxicity
[89,100,101]

Pollens Asthma, allergic rhinitis
[102-105]

Developing areas of Africa, Asia,

and South America with high
concentrations of relatively
uncontrolled mycotoxin
exposure

Sufficient evidence for

carcinogenicity in humans
for aflatoxins [89] and in
animals for fumonisins [91]
and ochratoxin [92,93].

Suggestive evidence of
reproductive toxicity in
humans.

Carcinogenicity conclusion of
systematic IARC review [94];
noncancer evidence from
documented episodes of human
poisoning as well as from
animal experiments

Those recreating in eutrophic
water that harbor algal
cyanobacterial populations;
people on water supplies from
sources that harbor the bacteria
but are not adequately treated
(disinfection can be insufficient);
greater consumption of
contaminated fish, shellfish,
and crayfish by those with lower
income. Because they are stable
to heat and acid, food preparation
does not protect consumers of
contaminated fish or shellfish.

People with preexisting health
conditions such as asthma;
people in communities and
developing countries with
existent high concentrations of
ozone; in US, urban centers in
the mid-Atlantic and northeast.

Fetus and young more impacted
at same dose than adults;
subsistence fishers

Fetus and young more impacted by
thyroid hormone-related toxicity
pathways; susceptibility of native
populations (e.g., Arctic)

Clear evidence from studies in
humans

Clear evidence in humans of
neurotoxicity in adults and
the young

Dioxin is a known human
carcinogen [89]. There is
sufficient animal evidence
supporting the potential
carcinogenicity of many POPs
[100]. There is a large volume
of evidence supporting
endocrine toxicity for many
POPs, such as PCBs [101].

Increase in temperature
associated with increased
pollen and increased
percentages of patients
sensitized to pollens have
been observed, but good
epidemiologic evidence is
lacking [22].

Children and older adults

GCC =global climate change; IARC =International Agency for Research on Cancer; POP =persistent organic pollutant; PCB = polychlorinated
biphenyl; PM, = particulate matter; SO, = sulfur dioxide; VOC = volatile organic compound.

Because the influence of GCC on chemical risk management
may vary among these different situations, we explore in more
depth the decision contexts associated with these processes.
Chemical management typically takes into account both short-
term and long-term risks, information on toxicity of specific
substances, and behavioral and other population characteristics
that influence exposure and vulnerability. For example, in
approving a pesticide, regulatory agencies typically consider
the consequences of acute occupational exposure in someone
applying the pesticide, the longer-term fate and transport of that
pesticide in the environment or food crop, and the extent to
which susceptible populations, such as infants and children,
are exposed. As another example, decisions for positioning
and permitting of facilities for generating or storing hazardous

substances typically take into account both exposure pathways
related to the long-term release of chemicals and the probability
of flooding, storms, or other weather extremes that may lead to
sudden large releases and exposure. The relative importance of
changes related to GCC for each of these decision contexts will
vary based on the specific questions asked and decisions to be
made, the time scale under consideration, and the characteristics
specific to the geographic location and populations being
analyzed.

In the following sections, four broad groups of chemical
contaminants (natural toxins, pesticides, air pollutants, and
legacy contaminants) are used to illustrate the implications
of GCC for different chemical-assessment and/or management
mechanisms.
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Natural toxins

Natural toxins are produced by algae (e.g., microcystins),
bacteria (e.g., botulinum), plants (e.g., glycoalkaloids, anisatin),
and fungi (e.g., aflatoxins, ochratoxins, zearalenone) and
include some highly toxic chemicals. These compounds have
been reported to elicit a range of effects on human health,
including death, effects on growth, liver cancers, cirrhosis,
gastrointestinal disease, neurotoxicity, and severe dermal tox-
icity [54-57]. Production of these compounds can be very
sensitive to environmental factors such as temperature and
humidity [54]. Indirect effects of GCC may also be important;
for example, changes in the distribution and activity of insect
vectors may increase the exposure and vulnerability of plants to
mycotoxins [54], and increases of runoff of nutrients from
agricultural systems and changes in dilution may increase the
occurrence of algal blooms [17]. Therefore, GCC is predicted to
increase human exposure to phytotoxins and mycotoxins in
some areas [58]. As some of these substances are particularly
potent in terms of toxicity to humans, these increases in
exposure could have a significant negative effect on the health
of populations in certain regions.

Human exposure to natural toxins is currently controlled in
many countries through monitoring of concentrations of these
compounds in crops, shellfish, and drinking water, although in
some regions monitoring is nonexistent. Therefore, any effect of
GCC on the occurrence and toxicity of natural toxins to humans
will be of direct interest to regulatory and public-health agen-
cies responsible for monitoring these compounds and to sup-
pliers of food or drinking water. The potential impacts of GCC
on the occurrence of natural toxins and subsequent impacts on
food security in different regions will also be of interest to
policy makers at the national and international levels. An
analysis of the implications of GCC on the monitoring of
natural toxins for food-safety purposes (Table 3) suggests that,
due to the likely increase in occurrence, existing monitoring
mechanisms may not be robust enough to protect human health
in the future. Increases in the occurrence of natural toxins may
also compromise the security of foodstuffs and drinking water
in some regions, resulting in negative effects on health and well
being. Fundamental research and programmatic questions
include whether existing monitoring schemes are adequate to
protect humans against exposure to natural toxins in the future
and the likelihood and potential consequences of an increased
incidence of natural toxins in food and water supplies.

Pesticides

Pesticides are important tools in much of modern agricul-
tural production and are critical for vector control in many parts
of the world (Table 4). It is anticipated that pesticide use will
increase in many parts of the world in response to greater pest
activity associated with increasing temperatures [17].

Many insecticides are acutely toxic, and their use in agri-
culture has resulted in poisonings among workers [59,60]. The
long-term health effects of pesticide exposures are less certain,
but reviews have identified significant health outcomes in
agrarian populations [61,62]. Efforts to minimize human expo-
sure to pesticides have generally focused on the following
three exposure settings: pesticide residues in food and drinking
water; exposures in farmers, farmworkers, and applicators; and
community exposures.

The case of pesticide residues in food is used to illustrate the
decision context for risk assessment in the face of GCC. Table 4
indicates that many factors other than GCC might influence

J.M. Balbus et al.

dietary pesticide exposure, and GCC could be of minor con-
sequence in some instances. Also, GCC could result in reduced
exposure and risk under certain conditions. However, in nearly
all cases it is expected that GCC will add to the complexity of
risk assessments. The significant changes in exposure to pes-
ticide residues via food are likely to result from changes in
decisions on the selection of particular pesticides for applica-
tion.

Setting of pesticide residue—tolerance levels in foods is a key
regulatory activity to protect the safety of the food supply.
It requires dose—response data and information on the dietary
habits of numerous subpopulations [63]. We also foresee
worker populations becoming more vulnerable to the effects
of pesticides due to enhanced skin absorption from exposure to
extreme heat, and we expect dietary habits to change based on
food cost and availability. These changes will require more
frequent updating of risk assessments. Similarly, monitoring for
pesticide residues is needed to ensure a safe food supply and
will need to be conducted more often as GCC alters pesticide
use. New product registrations are based on regulatory risk
assessments, and these are revisited periodically after a new
chemical is in use. Table 4 shows how the underlying
approaches to monitoring pesticides and assessing their risk
may require re-evaluation in the context of GCC. The ability to
forecast the safety of the food supply will become more
uncertain with more rapid changes in pest-management and
dietary behaviors.

Air pollutants

Human activities, especially combustion of fossil fuels for
energy, release a wide array of toxic substances into the air
(Table 5). Natural processes, ranging from wildfires to bio-
logical processes of life and decay, also contribute to harmful
air pollution. The two air pollutants associated with the greatest
burden of death and disease are fine particulate matter (PM2.5),
which comes from a variety of anthropogenic and natural
sources, and ozone, which is mostly formed in the atmosphere
from a chemical reaction between nitrogen oxides, sunlight, and
volatile organic compounds. Health effects associated with both
air pollutants include the exacerbation of chronic lung disease,
asthma, and myocardial infarction. Particulate matter has also
been associated with adverse birth outcomes and neurodeve-
lopmental delays. In the United States, it has been estimated that
fine particulate air pollution was responsible for over 130,000
deaths and ozone air pollution for over 4,700 deaths in the year
2005 [64].

Concentrations of air pollutants in the atmosphere are
strongly influenced by weather conditions. Air stagnation and
especially air inversions lead to high concentrations of fine
particulate matter, while precipitation and high winds tend to
lower concentrations. Ozone concentrations are highest on days
with high temperatures and high concentrations of ultraviolet
radiation from sunlight. In addition to directly affecting con-
centrations of PM2.5 and ozone, weather and climate conditions
indirectly affect concentrations through influences on natural
sources of precursors to these pollutants and on human activities
that result in emissions (e.g., increased energy consumption for
heating and air conditioning). By altering prevailing patterns of
temperature, precipitation, winds, and atmospheric penetration
of sunlight, GCC is anticipated to lead to both increases and
decreases in air pollutant concentrations [65,66].

Human health risks from criteria air pollutants are managed
by regulatory standards for ambient air concentrations and
by emissions-control standards for specific sources, permitting
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requirements, and other measures. Decisions regarding regu-
latory measures rely on health risk assessments that in turn use
observed concentrations and air-quality models to determine
population exposures. Only a few countries around the world
have established air-quality monitoring networks to provide
accurate data on pollutant concentrations; new techniques, such
as satellite observations, may play an important role in the
future management of human health risks, especially in devel-
oping countries [67]. Air-quality models include assumptions
about weather conditions to determine critical model parame-
ters that control air pollution—concentration estimates. As GCC
progresses, these models will need to be revised to reflect
changes in temperature and precipitation and the frequency
of unusual weather events.

It is possible that GCC will also contribute to changes in
population vulnerability to harmful air pollutants. For example,
added cardiovascular stress from high summer temperatures
may increase sensitivity to the cardiovascular effects of PM2.5
and ozone [44,67,68]. Conversely, warmer winter temperatures
may both reduce cardiovascular stress and lower emissions of
combustion products because of reduced heating needs.
Because both human and animal studies of air pollution have
devoted few resources to the study of interactions between
temperature and air pollution exposures, the extent of change in
vulnerability related to higher temperatures is uncertain and
comprises a research gap.

Many harmful air pollutants are created by the same proc-
esses that produce greenhouse gases, so significant measures to
reduce greenhouse gas emissions will in many cases lead to
reductions in harmful air pollutants as well. Several studies
indicate substantial health cobenefits from these air-pollution
reductions resulting from greenhouse gas—reduction measures
[69-71]. Estimates of these health benefits need to account for
GCC-related influences on the processes that determine air-
pollutant concentrations. Some measures to reduce greenhouse
gas emissions, such as the development of alternative fuels and
fuel additives, may create novel air pollutants or increase
concentrations of existing harmful ones [72,73]. These changes
in exposure and the consequent health effects must also be
anticipated and assessed in making decisions about greenhouse
gas reductions and air pollution.

Legacy pollutants

Legacy pollutants are persistent substances that have accu-
mulated in environmental reservoirs such as surface soils, ice,
sediments, and forests [74-76]. Their slow and continuous
emissions from these reservoirs pose a long-term risk to human
population and ecosystem health [77]. Legacy pollutants
include dioxins and dioxin-like compounds, PCBs, mercury
released into the environment by mining and combustion
processes, radioactive compounds from nuclear weapons test-
ing, DDT, lindane, and others [75]. The health effects of these
pollutants range from cancer, adverse reproductive outcomes,
and impaired neurodevelopment to disruption of the endocrine
and immune systems. Unlike the other risks highlighted in the
present study, the management of legacy pollutants, at least in
developed countries, primarily involves tracking reservoir sour-
ces and mitigating exposure rather than controlling or reducing
emissions from ongoing economic/industrial activities [78].
Developing countries, in addition to often lacking effective
monitoring and management of legacy pollutant waste sites,
may have populations highly exposed by ongoing recycling and
waste-processing activities [79].
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Because legacy pollutants persist and bioaccumulate in the
environment, longer-term environmental processes related to
GCC could influence their fate and transport and alter human
and ecosystem exposures [80]. The transfer of legacy pollutants
among environmental media determines their relative abun-
dance in mobile (water or air) compartments versus reservoir
compartments (soil and sediments). Legacy pollutants migrate
from one region to another through advection in a mobile phase
such as air or water [74]. If GCC results in stronger winds and/or
stronger river, lake, estuary, and ocean currents, regional and
global migration patterns will be altered. The persistence of
legacy pollutants depends on chemical transformation proc-
esses, some of which are climate-dependent. It will be necessary
to understand the potential impacts of GCC on processes such
as hydrolysis and biotransformation, which play a key role in
removing chemicals from environmental media such as soil,
water, and sediments (Table 6).

CONCLUSIONS AND RECOMMENDATIONS

Global climate change may affect multiple steps in the
process of human exposure and harm to human health from
chemical risks, including emissions from sources, transport and
transformation in the environment, and human behaviors and
vulnerabilities. For many chemical contaminants, a net increase
in exposure is likely in certain regions of the world. While GCC
will affect the fate and transport of chemicals in multiple and
complex ways, in many cases the main climate-related drivers
influencing human exposure will be changes in the types of
chemicals used by society, alterations in the amounts and
patterns of chemical use, and changes in the rates of formation
of natural toxins in natural systems. Also, GCC will affect the
way in which human populations interact with the natural
environment so as to alter the degree of exposure. Alongside
changes in exposure, changes in the sensitivity of humans to
chemical exposure are expected due to factors such as increases
in the levels of heat stress, psychosocial factors, suppression of
the immune system, and alterations in nutritional status due to
changes in diet and the quality of foodstuffs.

While each individual impact of GCC on chemical exposure
and human sensitivity may not be highly significant and may
occur in either a positive or a negative direction, the potential
cumulative impacts of multiple influences could significantly
alter risks to human health. Despite significant uncertainties,
the preponderance of the current evidence suggests that
many human health risks from chemicals may be increased
in the future if a business-as-usual approach is adopted.
Changes in risks are likely to be most significant for
chemicals where microbes, plants, and lower animals are
involved in the source-to-receptor pathway. Increases in risks
are likely to be seen for the natural toxins that are produced by
microbes, algae, and plants. The risks of chemicals, such as
pesticides, whose use is determined by population responses
of fungi, weeds, and lower-order animals, or those, like mer-
cury, whose speciation is altered by the activity of micro-
organisms, will also be significantly affected. While the abso-
lute magnitude of changes in average air concentrations related
to GCC may be relatively small for a given air pollutant,
widespread human exposures, increased peak concentrations
in certain geographical areas, and significant health consequen-
ces make such impacts of GCC very important from a public-
health standpoint.

These alterations in risks have implications for national
and international decision makers involved in the regulation



Global climate change and human health risk assessment

and authorization of chemical products and the monitoring and
management of chemicals in environmental matrices and food-
stuffs. The expected changes reveal that some of the scenarios
and models currently used in health risk assessment of chem-
icals will need updates and revision in order to reflect some of
the future changes described earlier. Monitoring methodologies
may also need to be adapted in order to cope with increased
variability in exposure, sensitivity, and risk, both spatially
and temporally. Monitoring and sampling should be done at
a frequency sufficient to capture variability, which is likely to
increase in many places.

It is also important to recognize that human exposure to
chemicals in the environment in the future will be affected by
other, non-climate-related drivers such as increased urbaniza-
tion, future technological developments (such as a move toward
more environmentally benign pesticides), ongoing strategies
to reduce emissions and other environmental releases (e.g., of
persistent organic pollutants), and economic changes. In some
cases, these drivers may have a bigger impact on human
exposure (either increasing or lowering exposures) and risks
than GCC alone.

There are, however, major gaps in our current understanding
of how chemical risks will change. A concerted effort is
therefore needed at an international level to better characterize
the potential impacts of GCC and other future drivers on
exposure, sensitivity, and risk. We recommend that work should
focus on the following areas. First, the development of future
models and scenarios of land use and social, technological, and
economic change in order to provide a basis for informing how
inputs of chemicals to the environment, in different regions of
the world, may change in the future. Second, work should focus
on the generation of improved data sets and models for deter-
mining future human exposure to chemicals in different envi-
ronmental matrices. This work should consider the importance
of emerging exposure pathways, such as increased inhalation of
contaminated dust or exposure consequences of flooding, and
consider the implications of human behavioral change on the
degree of exposure. Furthermore, there should be focus the
development of research programs that aim to fill gaps in our
understanding of the interactions between climate and weather
parameters and human sensitivity to chemical exposures. Focus
should also be given to the refinement of regulatory models
and procedures in the light of knowledge gained from work
on exposure and human sensitivity to toxicants. Existing risk
assessments and chemical management programs should also
be updated to determine whether the risks of a current-use
product could change in the future. Finally, work should give
focus to the development of targeted surveillance schemes for
the presence and health effects of select chemicals in different
environmental compartments for different regions of the world
and at smaller geographical scales to address inequities at the
community level.

To address these knowledge gaps, input is required from
a wide range of disciplines (including climate science,
toxicology, exposure science, public health, environmental
modeling, social science, economics, and environmental chem-
istry) and a range of sectors across the globe. It is essential
that future research and assessment programs take a holistic
approach and do not just focus on GCC-driven changes
alone. Research programs should also include elements
of technology transfer and capacity building for developing
countries struggling to adapt to GCC impacts, many of which
will be most vulnerable to the forecast changes in chemical
exposure.
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